On Judging the Significance of Differences by Examining the Overlap Between Confidence Intervals

Abstract
To judge whether the difference between two point estimates is statistically significant, data analysts often examine the overlap between the two associated confidence intervals. We compare this technique to the standard method of testing significance under the common assumptions of consistency, asymptotic normality, and asymptotic independence of the estimates. Rejection of the null hypothesis by the method of examining overlap implies rejection by the standard method, whereas failure to reject by the method of examining overlap does not imply failure to reject by the standard method. As a consequence, the method of examining overlap is more conservative (i.e., rejects the null hypothesis less often) than the standard method when the null hypothesis is true, and it mistakenly fails to reject the null hypothesis more frequently than does the standard method when the null hypothesis is false. Although the method of examining overlap is simple and especially convenient when lists or graphs of confidence int...