Epicardial potential mapping. Effects of conducting media on isopotential and isochrone distributions.
- 1 December 1991
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation
- Vol. 84 (6) , 2513-2521
- https://doi.org/10.1161/01.cir.84.6.2513
Abstract
BACKGROUND: Epicardial excitation sequences, recovery sequences, and potential distributions are recorded from patients during surgery and from animals in the research laboratory for a variety of purposes. During such recordings, a portion of the cardiac surface is exposed to air, and the remainder of the epicardial surface variably is in contact with conductive tissue. No systematic studies document the degree to which these different conditions affect measured excitation times, potential distributions, and/or the configuration of epicardial electrograms. METHODS AND RESULTS: Epicardial potential distribution was recorded from five isolated, perfused hearts using a 64-unipolar-lead sock. Data were recorded first with the heart suspended in air and then with the heart immersed in a heated tank filled sequentially to full and half-full levels with conductive Tyrode's solution and then NaCl-sucrose solution. These solutions had resistivity less than and more than that of blood, respectively, and air was assumed to have infinite resistivity. Epicardial potentials were recorded from two hearts before removal from the chest, both with and without a latex sheet insulating the heart from the pericardial cradle. Amplitude of recorded potentials from both intact and isolated hearts was markedly higher when the heart was surrounded by an insulating medium, but locations of positive and negative regions were less affected by surrounding medium. Isochrone activation maps calculated using the minimum derivative of the QRS (intrinsic deflection) were not affected by the conductivity of media surrounding the heart. CONCLUSIONS: The present study provides evidence that isochrone maps recorded at surgery are not distorted by exposure of the cardiac surface to insulating air. Results suggest that epicardial isochrones recorded during cardiac surgery could be used in patients to assess the accuracy of "inverse" procedures that noninvasively compute epicardial electrograms and isochrones from body surface potentials.Keywords
This publication has 5 references indexed in Scilit:
- A validation of derived epicardial potential distributions by prediction of the coronary artery involved in acute myocardial infarction in humans.Circulation, 1987
- Activation sequence of ventricular tachycardia: Endocardial and epicardial mapping studies in the human ventricleJournal of the American College of Cardiology, 1987
- Techniques of intraoperative electrophysiologic mappingThe American Journal of Cardiology, 1982
- ALTERATIONS IN THE ELECTRICAL FIELD PRODUCED BY CHANGES IN THE CONTACTS OF THE HEART WITH THE BODYAmerican Journal of Physiology-Legacy Content, 1936
- THE MANNER IN WHICH THE ELECTRIC CURRENTS GENERATED BY THE HEART ARE CONDUCTED AWAYAmerican Journal of Physiology-Legacy Content, 1935