Release of Protein from Normal and Mutant Tomato Cell Walls

Abstract
The nitrogen content of cell wall preparations from normal tomato (cv Ailsa Craig) fruit remained constant during ripening, whereas salt-soluble protein increased throughout this process. Tomato polygalacturonase released about twice as much protein from the preparations as salts did, with a maximum at the orange stage of development. Polygalacturonase-solubilized protein from the tomato mutant `ripening inhibitor' (rin) was less, and that from the mutant `Never ripe' (Nr) cell walls was more than that from normal wall preparations. Release of protein by fungal cellulase was limited, but was increased by the addition of polygalacturonase from the same source. Salt-solubilized protein contained a range of enzymic activities but these were distributed between fewer multimolecular forms than is the case for whole cell preparations. The results suggest that metabolically active protein, removable by strong salt solutions, cellulase, or polygalacturonase, remains attached to the cell walls of tomato fruit until late in ripening. The unusual amounts of protein attached to the cell walls of mutant fruit appear to be a reflection of the absence of some or all of the isoenzymes of polygalacturonase that are associated with normal ripening.
Keywords