Abstract
Geometric aspects of linear model theory are surveyed as they bear on mean estimation, or variance covariance component estimation. It is outlined that notions associated with linear subspaces suffice for those of the customary procedures which are solely based on linear, or multilinear algebra. While conceptually simple, these methods do not always respect convexity constraints which naturally arise in variance component estimation. Previous work on negative estimates of variance is reviewed, followed by a more detailed study of the non-negative definite analogue of the MINQUE procedure. Some characterizations are proposed which are based on convex duality theory. Optimal estimators now correspond to (non-linear) projections onto closed convex cones, they are easy to visualise, but hard to compute. No ultimate solution can be recommended, instead the paper concludes with a list of open problems.