Shock-induced reaction synthesis (SRS) of nickel aluminides
- 1 May 1992
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 7 (5) , 1063-1075
- https://doi.org/10.1557/jmr.1992.1063
Abstract
Shock-induced chemical reactions between nickel and aluminum powders (mixed in Ni3Al stoichiometry) are used for the synthesis of nickel aluminides. It is shown that the extent of shock-induced chemical reactions and the nature of the shock-synthesized products are influenced by the morphology of the starting powders. Irregular (flaky type) and fine morphologies of the powders undergo complete reactions in contrast to partial reactions occurring in coarse and uniform morphology powders under identical shock loading conditions. Furthermore, irregular morphology powders result in the formation of the equiatomic (B2phase) NiAl compound while the Ni3Al (L12phase) compound is the reaction product with coarse and regular morphology powders. Shock-induced reaction synthesis can be characterized as a bulk reaction process involving an intense “mechanochemical” mechanism. It is a process in which shock compression induces fluid-like plastic flow and mixing, and enhances the reactivity due to the introduction of defects and cleansing of particle surfaces, which strongly influence the synthesis process.Keywords
This publication has 28 references indexed in Scilit:
- Synthesis of nickel aluminides by mechanical alloyingMaterials Letters, 1988
- SHOCK COMPRESSION PROCESSING OF POWDERSAdvanced Materials and Manufacturing Processes, 1988
- Microstructural modifications in a dynamically consolidated microcrystalline nickel titanium alloy powderJournal of Materials Science, 1987
- Formation of amorphous nickel aluminides under shock-wave loadingMaterials Letters, 1987
- An investigation of the synthesis of nickel aluminides through gasless combustionJournal of Materials Science, 1987
- Materials Modification and Synthesis Under High Pressure Shock CompressionAnnual Review of Materials Science, 1986
- Combustion synthesis of titanium carbide: Theory and experimentJournal of Materials Science, 1986
- Synthesis of nickel aluminides under high-pressure shock loadingMaterials Letters, 1985
- Shock Effects in Certain Rock-Forming MineralsScience, 1967
- Maskelynite: Formation by Explosive ShockScience, 1963