Viscosity Dependence of the Folding Rates of Proteins

Abstract
The viscosity dependence of the folding rates for four sequences (the native state of three sequences is a beta-sheet, while the fourth forms an alpha-helix) is calculated for off-lattice models of proteins. Assuming that the dynamics is given by the Langevin equation we show that the folding rates increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and have a maximum at intermediate values. The Kramers theory of barrier crossing provides a quantitative fit of the numerical results. By mapping the simulation results to real proteins we estimate that for optimized sequences the time scale for forming a four turn \alpha-helix topology is about 500 nanoseconds, whereas the time scale for forming a beta-sheet topology is about 10 microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical Review Letter
All Related Versions

This publication has 15 references indexed in Scilit: