An Assessment of Satellite and Radiosonde Climatologies of Upper-Tropospheric Water Vapor

Abstract
This study compares radiosonde and satellite climatologies of upper-tropospheric water vapor for the period 1979–1991. Comparison of the two climatologies reveals significant differences in the regional distribution of upper-tropospheric relative humidity. These discrepancies exhibit a distinct geopolitical dependence that is demonstrated to result from international differences in radiosonde instrumentation. Specifically, radiosondes equipped with goldbeater's skin humidity sensors (found primarily in the former Soviet Union, China, and eastern Europe) report a systematically moister upper troposphere relative to the satellite observations, whereas radiosondes equipped with capacitive or carbon hygristor sensors (found at most other locations) report a systematically drier upper troposphere. The bias between humidity sensors is roughly 15%–20% in terms of the relative humidity, being slightly greater during summer than during winter and greater in the upper troposphere than in the midtroposphere... Abstract This study compares radiosonde and satellite climatologies of upper-tropospheric water vapor for the period 1979–1991. Comparison of the two climatologies reveals significant differences in the regional distribution of upper-tropospheric relative humidity. These discrepancies exhibit a distinct geopolitical dependence that is demonstrated to result from international differences in radiosonde instrumentation. Specifically, radiosondes equipped with goldbeater's skin humidity sensors (found primarily in the former Soviet Union, China, and eastern Europe) report a systematically moister upper troposphere relative to the satellite observations, whereas radiosondes equipped with capacitive or carbon hygristor sensors (found at most other locations) report a systematically drier upper troposphere. The bias between humidity sensors is roughly 15%–20% in terms of the relative humidity, being slightly greater during summer than during winter and greater in the upper troposphere than in the midtroposphere...