Abstract
The mean flow and turbulent statistics obtained from the numerical simulation of the fully developed turbulent flow through a straight duct of square cross-section are reported. The Reynolds number based on the bulk velocity and hydraulic diameter is 4410. Spatial and temporal approximations of the equations of motion were derived from standard finite-difference techniques. To achieve sufficient spatial resolution 16.1 × 106 grid nodes were employed. Turbulent statistics along the wall bisectors show good agreement with plane channel data despite the influence of the sidewalls in the former flow. The mean secondary flow field consists of two counter-rotating cells symmetrically placed about the corner bisectors with their common flow towards each corner with strong evidence for the existence of a smaller and much weaker pair situated about the wall bisectors. The mean streamwise vorticity of each corner cell is found to be associated with a stronger vorticity distribution of the opposite sign having an absolute maximum on the nearest duct wall.