Identification of a Novel Archaebacterial Thioredoxin: Determination of Function through Structure
- 22 March 2002
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 41 (15) , 4760-4770
- https://doi.org/10.1021/bi0115176
Abstract
As part of a high-throughput, structural proteomic project we have used NMR spectroscopy to determine the solution structure and ascertain the function of a previously unknown, conserved protein (MtH895) from the thermophilic archeon Methanobacterium thermoautotrophicum. Our findings indicate that MtH895 contains a central four-stranded β-sheet core surrounded by two helices on one side and a third on the other. It has an overall fold superficially similar to that of a glutaredoxin. However, detailed analysis of its three-dimensional structure along with molecular docking simulations of its interaction with T7 DNA polymerase (a thioredoxin-specific substrate) and comparisons with other known members of the thioredoxin/glutaredoxin family of proteins strongly suggest that MtH895 is more akin to a thioredoxin. Furthermore, measurement of the pKa values of its active site thiols along with direct measurements of the thioredoxin/glutaredoxin activity has confirmed that MtH895 is, indeed, a thioredoxin and exhibits no glutaredoxin activity. We have also identified a group of previously unknown proteins from several other archaebacteria that have significant (34−44%) sequence identity with MtH895. These proteins have unusual active site -CXXC- motifs not found in any known thioredoxin or glutaredoxin. On the basis of the results presented here, we predict that these small proteins are all members of a new class of truncated thioredoxins.Keywords
This publication has 19 references indexed in Scilit:
- AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMRJournal of Biomolecular NMR, 1996
- MOLMOL: A program for display and analysis of macromolecular structuresJournal of Molecular Graphics, 1996
- 1H, 13C and 15N chemical shift referencing in biomolecular NMRJournal of Biomolecular NMR, 1995
- Measurement of HN-H? J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methodsJournal of Biomolecular NMR, 1994
- Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniquesJournal of Biomolecular NMR, 1994
- Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMRJournal of the American Chemical Society, 1992
- Stereospecific assignment of β-methylene protons in larger proteins using 3D15N-separated Hartmann-Hahn and13C-separated rotating frame Overhauser spectroscopyJournal of Biomolecular NMR, 1991
- Determination of three‐dimensional structures of proteins from interproton distance data by hybrid distance geometry‐dynamical simulated annealing calculationsFEBS Letters, 1988
- Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonanceJournal of Molecular Biology, 1983
- Investigation of exchange processes by two-dimensional NMR spectroscopyThe Journal of Chemical Physics, 1979