Abstract
Experiments were conducted to determine the film cooling effectiveness and convective heat transfer coefficient distributions on the endwall of a large-scale turbine vane passage. The vane test models employed simulated the passage geometry and upstream cooling slot geometry of a typical first-stage turbine. The test models were constructed of low thermal conductivity foam and foil heaters. The tests were conducted at a typical engine Reynolds number but at lower than typical Mach numbers. The film cooling effectiveness distribution for the entire endwall and the heat transfer distribution for the downstream one-half of the endwall were characterized by large gapwise variations which were attributed to a secondary flow vortex.

This publication has 0 references indexed in Scilit: