Abstract
One fundamental process of the auditory system is to process rapidly occurring acoustic stimuli, which are fundamental components of complex stimuli such as animal vocalizations and human speech. Although the auditory cortex is known to subserve the perception of acoustic temporal events, relatively little is currently understood about how single neurons respond to such stimuli. We recorded the responses of single neurons in the primary auditory cortex of alert monkeys performing an auditory task. The stimuli consisted of four tone pips with equal duration and interpip interval, with the first and last pip of the sequence being near the characteristic frequency of the neuron under study. We manipulated the rate of presentation, the frequency of the middle two tone pips, and the order by which they were presented. Our results indicate that single cortical neurons are ineffective at responding to the individual tone pips of the sequence for pip durations of <12 ms, but did begin to respond synchronously to each pip of the sequence at 18-ms durations. In addition, roughly 40% of the neurons tested were able to discriminate the order that the two middle tone pips were presented in at durations of ≥24 ms. These data place the primate primary auditory cortex at an early processing stage of temporal rate discrimination.