Influence of Salmonine Predation and Weather on Long-Term Water Quality Trends in Lake Michigan

Abstract
Trends in Lake Michigan water quality over 1975–84 appear to reflect reduced nutrient loadings as indicated by gradual declines in spring total phosphorus (TP) and summer epilimnetic chlorophyll a (Chl a). Deviations from these trends during 1977 and 1983–84 were apparently caused by abiotic and biotic factors, respectively. Prolonged ice cover during 1977 decreased sediment resuspension resulting in lower TP, reduced Chl a levels, and increased water clarity. A similar dramatic result occurred in 1983 and to a lesser extent in 1984, but via a different mechanism. Burgeoning populations of stocked salmonines reduced populations of the planktivorous alewife (Alosa pseudoharengus), which allowed large Daphnia to flourish. Because the Daphnia are more voracious and nonselective grazers than the formerly dominant calanoid copepods, they reduced seston concentrations, causing dramatic increases in Secchi disk transparency. These exceptions demonstrate the far-reaching consequences that unusual weather conditions and fish management practices may have on water quality indicators.