Generalized theory of the photoacoustic effect

Abstract
The theory of the photoacoustic effect is extended to include the contribution of mechanical vibration of the sample. Coupled equations for thermal and acoustic waves are solved in both sample and gas. It is shown that the pressure signal in the gas may be significantly affected by acoustic coupling in the sample, and experimental confirmation of this extended theory is given. The results of the fully coupled treatment are shown to be accurately reproduced by an extension of the Rosencwaig piston model: the pistonlike motion of the gas boundary layer adjoining the sample is superimposed on the mechanical vibration of the sample surface to give a composite piston displacement which then produces the pressure signal in the gas. The composite‐piston model provides relatively simple algebraic results applicable to many cases of physical interest.