Motion of the Ankle in a Simulated Supination-External Rotation Fracture Model*
- 1 July 1996
- journal article
- research article
- Published by Wolters Kluwer Health in Journal of Bone and Joint Surgery
- Vol. 78 (7) , 1024-31
- https://doi.org/10.2106/00004623-199607000-00006
Abstract
An experimental study was undertaken with use of axially loaded, unconstrained cadaver ankles to determine the motion patterns seen with progressive stages of the supination-external rotation type of fracture. As described by Lauge-Hansen, these fractures were modeled by transection of the anterior aspect of the capsule and the anterior tibiofibular ligament (stage I), followed by oblique fibular osteotomy ending at the level of the ankle joint (stage II), transection of the posterior aspect of the capsule (stage III), and sequential sectioning of the superficial and deep fibers of the deltoid ligament (stage IV). Thirteen specimens were tested on an apparatus that allowed for controlled loading while the ankle was passed through a physiological range of dorsiflexion and plantar flexion. The ankles were unconstrained about the axial (internal and external rotation) and coronal (varus and valgus angulation) axes. Measurements were made throughout the range of motion in these axes in order to define the kinematic behavior. In the intact specimens, maximum plantar flexion was associated with a mean (and standard deviation) of 1.9 +/- 4.12 degrees of internal rotation of the talus and maximum dorsiflexion, with a mean of 7.2 +/- 3.88 degrees of external rotation. Varus angulation increased slightly with plantar flexion compared with the value in dorsiflexion (2.4 +/- 2.40 compared with 0.3 +/- 1.96 degrees). Internal and external rotation was not affected by fibular osteotomy or by transection of the superficial fibers of the deltoid ligament. Transection of the deep fibers of the deltoid ligament caused a significant (p < 0.02) increase in external rotation of the talus at maximum plantar flexion; this was corrected incompletely by insertion of an anatomical fibular plate. With the numbers available for study, we could not show that varus or valgus angulation was significantly affected by any combination of sectioning of the deltoid ligament and fibular osteotomy. These experiments were repeated with the addition of fixation of the subtalar joint with a talocalcaneal screw. With the number of specimens available, we could detect no significant difference, with respect to axial rotation, due to fixation of the subtalar joint. However, along the coronal axis, increased valgus angulation (p < 0.02) was seen during plantar flexion when either the deep or the superficial fibers of the deltoid ligament had been cut. These results indicate that stability of the loaded ankle is primarily due to the deltoid ligament, which exerts a restraining influence on external rotation of the talus. Complete fibular osteotomy did not cause abnormal motion of the ankle in the absence of a medial injury. In the presence of a complete injury, lateral reconstruction only partially restored the mechanical integrity of the ankle. The results provide justification for the non-operative treatment of isolated fractures of the lateral malleolus. The data also suggest that a lateral fracture associated with a major injury of the deltoid ligament should be treated with anatomical lateral fixation followed by immobilization without early motion, to allow adequate healing of the deltoid ligament at its resting length.Keywords
This publication has 20 references indexed in Scilit:
- Tibio-Talar Stability in Bimalleolar Ankle Fractures: A Dynamic In Vitro Contact Area StudyFoot & Ankle, 1991
- The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: KinematicsJournal of Biomechanical Engineering, 1988
- Cervical instability in skeletal dysplasia Report of 6 surgically fused casesActa Orthopaedica, 1988
- Stability of the loaded ankleThe American Journal of Sports Medicine, 1985
- Closed treatment of ankle fractures: Stage II supination-eversion fractures followed for 20 yearsActa Orthopaedica, 1985
- Thirty-year follow-up of ankle fracturesActa Orthopaedica, 1985
- An Anatomic Study of the Short Oblique Fracture of the Distal Fibula and Ankle StabilityFoot & Ankle, 1983
- Deltoid Ligament: Functional Analysis of the Medial Collateral Ligamentous Apparatus of the Ankle JointActa Orthopaedica, 1983
- The Role of the Lateral Malleolus as a Stabilizing Factor of the Ankle Joint: Preliminary ReportFoot & Ankle, 1981
- Ankle Fractures: Supination-Eversion Fractures of Stage IV:Primary and Late Results of Operative and Non—operative TreatmentActa Orthopaedica, 1980