Cytochrome c protein-synthesis rates and mRNA contents during atrophy and recovery in skeletal muscle

Abstract
It is known that immobilization of the rat hindlimb by plaster casting leads to muscle atrophy and loss of muscle protein. In the present study, immobilization of the rat hindlimb for 6 h resulted in a significant 27% decrease in the absolute rate of cytochrome c synthesis in the red quadriceps muscle, without any change in the relative amount of cytochrome c mRNA. Cytochrome c mRNA in normal red quadriceps muscle was observed to be of four different lengths (1400, 1050, 650 and 580 bases). After 7 days of immobilization, the absolute rate of cytochrome c synthesis remained depressed and cytochrome c mRNA decreased by 40%; each of the cytochrome c mRNAs decreased, with a preferential disappearance of the 1050- and 1400-base lengths. Immobilization was ended on day 7, and the atrophied muscle was allowed to recover. At day 4 of recovery, the absolute rate of cytochrome c synthesis was 92% higher and the amount of cytochrome c mRNA had returned to control values. The abundances of the 1050- and 1400-base cytochrome c mRNAs had increased more than the shorter cytochrome c mRNAs, so that they were higher than control values. It appears that acute decreases in contractile activity of the red quadriceps muscle alter cytochrome c synthesis rates via translational or post-translational mechanisms, whereas chronic periods of modified contractile activity alter its synthesis rate via pre-translational mechanisms.