Abstract
Plane wave scattering by an infinite, two-dimensional wedge whose faces are characterized by impedance tensors is discussed. A combination of the moment method (MM) and physical optics (PO) is used to obtain a solution for the equivalent electric currents. The currents near the edge on each face are expanded with a set of basis functions consisting of pulse functions, defined on a meshed region, plus a function spanning the whole face. The currents outside the meshed region are taken to be the sum of physical optics currents, taken to be known, plus the whole-face basis function current. Expressing the equivalent magnetic currents in terms of the electric currents through the impedance tensors, the expansion coefficients for the electric current expansion are determined through an MM solution of the magnetic field integral equation. Sample results for wedges with isotropic and anisotropic face impedances are presented.