Abstract
Plane elastic waves can be propagated in every direction of an unbounded elastic medium. It is known that associated with each direction there are three independent waves, the displacements of which form a mutually orthogonal set. In general none of the three displacement vectors coincides with the vector of the normal to the wave front, that is, in general that waves are neigher longitudinal nor transverse. The purpose of this paper is to find specific directions in a medium of given anisotropy, along which the displacement of one of the three possible waves is exactly parallel to the direction of wave propagation. A method is developed which leads to the complete set of such "longitudinal" directions, if the matrix of the elastic coefficients is known.

This publication has 2 references indexed in Scilit: