Abstract
1. We use Cassels's notation and define h (m, n), Q (m, n), Zh (s), Zh (1) – ZQ (1) and G (x, y) as in [1]. Rankin [5] proved that the Epstein zeta-function Zh (s) satisfies, for s ≧ 1·035, theTHEOREM. For s > 0, Zh (s) — ZQ (s) ≧ 0 with equality if and only ifh is equivalent to Q. Rankin then asked whether the theorem is true for all s > 1. Cassels [1] answered this question in the affirmative and proved further that the theorem is true for all s > 0.

This publication has 4 references indexed in Scilit: