On the interaction between order and a moving interface: Dynamical disordering and anisotropic growth rates
- 1 March 1987
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 86 (5) , 2932-2942
- https://doi.org/10.1063/1.452044
Abstract
The way in which the velocity of a propagating interface determines the degree of surface disorder and the anisotropy of such interfacial velocities due to a crystalline lattice are examined using steady state solutions of the time dependent Landau–Ginzburg or Cahn–Hilliard equations. In the case of an interface described by two weakly coupled order parameters a divergence of the thickness of the surface disorder at a critical interfacial velocity is described. It is demonstrated that even for two surfaces with the same surface tension the growth rates may differ significantly due to a geometric factor arising from the underlying crystal lattice.Keywords
This publication has 14 references indexed in Scilit:
- Unidirectional Crystal Growth and Crystal AnisotropyPhysica Scripta, 1985
- Properties of the solid-liquid interface of growing salol crystals: A dynamic light scattering investigationPhysical Review A, 1984
- Kinetic depinning transitionsZeitschrift für Physik B Condensed Matter, 1984
- Asymmetry of dynamics at the growing crystal-melt interfacePhysical Review B, 1984
- The Anisotropy of Interface Mobility in F.C.C. CrystalsPhysica Status Solidi (a), 1984
- Properties of the solid-liquid interface layer of growing ice crystals: A dynamic light scattering studyPhysical Review A, 1983
- Surface induced disordering at first-order bulk transitionsZeitschrift für Physik B Condensed Matter, 1983
- Crystallization Rates of a Lennard-Jones LiquidPhysical Review Letters, 1982
- Steady-state kinetics of diffusionless first order phase transformationsThe Journal of Chemical Physics, 1977
- Statistical theory of the decay of metastable statesAnnals of Physics, 1969