Mechanism of platelet plug formation and role of adenosine diphosphate
- 31 May 1964
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Legacy Content
- Vol. 206 (6) , 1267-1274
- https://doi.org/10.1152/ajplegacy.1964.206.6.1267
Abstract
Traumatized rat omentum was used to demonstrate the development of "platelet plugs" following agitation in platelet-rich plasma. In the absence of divalent cation there was only platelet adhesion to connective tissue fibers; in the presence of divalent cation masses of platelets formed (cohesion) even in plasma adequately anticoagulated with heparin. Exposure of these platelet masses to thrombin produced greater compactness and stability. Human and rat platelets behaved alike with the traumatized rat omentum; platelets from two patients with von Willebrand's disease gave normal reactions whereas platelets from a patient with thrombasthenia showed adhesion only. Exposure of human platelets to washed connective-tissue fragments or to thrombin elicited clumping accompanied by release of serotonin and of adenine nucleotides (AN) of which about one-third was adenosine diphosphate. Intermediate concentrations of connective tissue and thrombin also caused clumping but no liberation of AN or serotonin. ADP caused intense clumping but failed to liberate serotonin or additional ADP. It is suggested that cohesion reaction is mediated by release of ADP. The traumatized omentum appears to be a suitable model for studying the hemostatic process.Keywords
This publication has 0 references indexed in Scilit: