Differential protein import deficiencies in human peroxisome assembly disorders.
Open Access
- 15 May 1994
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 125 (4) , 755-767
- https://doi.org/10.1083/jcb.125.4.755
Abstract
Two peroxisome targeting signals (PTSs) for matrix proteins have been well defined to date. PTS1 comprises a COOH-terminal tripeptide, SKL, and has been found in several matrix proteins, whereas PTS2 has been found only in peroxisomal thiolase and is contained within an NH2-terminal cleavable presequence. We have investigated the functional integrity of the import routes for PTS1 and PTS2 in fibroblasts from patients suffering from peroxisome assembly disorders. Three of the five complementation groups tested showed a general loss of PTS1 and PTS2 import. Two complementation groups showed a differential loss of peroxisomal protein import: group I cells were able to import a PTS1- but not a PTS2- containing reporter protein into their peroxisomes, and group IV cells were able to import the PTS2 but not the PTS1 reporter into aberrant, peroxisomal ghostlike structures. The observation that the PTS2 import pathway is intact only in group IV cells is supported by the protection of endogenous thiolase from protease degradation in group IV cells and its sensitivity in the remaining complementation groups, including the partialized disorder of group I. The functionality of the PTS2 import pathway and colocalization of endogenous thiolase with the peroxisomal membranes in group IV cells was substantiated further using immunofluorescence, subcellular fractionation, and immunoelectron microscopy. The phenotypes of group I and IV cells provide the first evidence for differential import deficiencies in higher eukaryotes. These phenotypes are analogous to those found in Saccharomyces cerevisiae peroxisome assembly mutants.Keywords
This publication has 50 references indexed in Scilit:
- BIOCHEMISTRY OF PEROXISOMESAnnual Review of Biochemistry, 1992
- Subcellular localisation and processing of non‐specific lipid transfer protein are not aberrant in Rhizomelic Chondrodysplasia Punctata fibroblastsFEBS Letters, 1992
- Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targetingBiochemical and Biophysical Research Communications, 1991
- Acyl‐CoA oxidase, peroxisomal thiolase and dihydroxyacetone phosphate acyltransferase: Aberrant subcellular localization in Zellweger syndromeJournal of Inherited Metabolic Disease, 1990
- Rhizomelic chondrodysplasia punctata: Clinical, pathologic, and biochemical findings in two patientsThe Journal of Pediatrics, 1988
- Biochemical abnormalities in rhizomelic chondrodysplasia punctataThe Journal of Pediatrics, 1988
- The role of peroxisomes in mammalian cellular metabolismJournal of Inherited Metabolic Disease, 1987
- In vitro synthesis of peroxisomal membrane polypeptidesBiochemical and Biophysical Research Communications, 1986
- Peroxisomal β-oxidation enzyme proteins in the Zellweger syndromeBiochemical and Biophysical Research Communications, 1985
- Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndromeBiochemical and Biophysical Research Communications, 1984