Vector Operators and a Polynomial Identity for SO(n)
- 1 October 1971
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 12 (10) , 2099-2106
- https://doi.org/10.1063/1.1665506
Abstract
It is shown that if α denotes an n × n antisymmetric matrix of operators αpq,p,q = 1, 2, …, n, which satisfy the commutation relations characteristic of the Lie algebra of SO(n), then α satisfies an nth degree polynomial identity. A method is presented for determining the form of this polynomial for any value of n. An indication is given of the simple significance of this identity with regard to the problem of resolving an arbitrary n‐vector operator into n components, each of which is a vector shift operator for the invariants of the SO(n) Lie algebra.Keywords
This publication has 11 references indexed in Scilit:
- SÕ(n) — Symmetric field equationsCommunications in Mathematical Physics, 1968
- A pattern calculus for tensor operators in the unitary groupsCommunications in Mathematical Physics, 1968
- Derivation of the Gell-Mann-Okubo Mass FormulaJournal of Mathematical Physics, 1963
- On the Postulational Basis of the Theory of Elementary ParticlesReviews of Modern Physics, 1949
- Relativistic Wave Equations for the Elementary ParticlesReviews of Modern Physics, 1945
- Theory of Complex Spectra. IIPhysical Review B, 1942
- Zur Hyperfeinstruktur von Li+. Teil IIThe European Physical Journal A, 1931
- Die Zusammensetzung der stetigen endlichen TransformationsgruppenMathematische Annalen, 1890
- Die Zusammensetzung der stetigen endlichen Transformations-gruppenMathematische Annalen, 1889
- Die Zusammensetzung der stetigen endlichen Transformations-gruppenMathematische Annalen, 1888