Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria
- 1 December 1991
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 202 (2) , 617-623
- https://doi.org/10.1111/j.1432-1033.1991.tb16415.x
Abstract
Both the external oxidation of NADH and NADPH in intact potato (Solanum tuberosum L. cv. Bintje) tuber mitochondria and the rotenone-insensitive internal oxidation of NADPH by inside-out submitochondrial particles were dependent on Ca2+. The stimulation was not due to increased permeability of the inner mitochondrial membrane. Neither the membrane potential nor the latencies of NAD+-dependent and NADP+-dependent malate dehydrogenases were affected by the addition of Ca2+. The pH dependence and kinetics of Ca2+-dependent NADPH oxidation by inside-out submitochondrial particles were studied using three different electron acceptors: O2, duroquinone and ferricyanide. Ca2+ increased the activity with all acceptors with a maximum at neutral pH and an additional minor peak at pH 5.8 with O2 and duroquinone. Without Ca2+, the activity was maximal around pH 6. The K(m) for NADPH was decreased fourfold with ferricyanide and duroquinone, and twofold with O2 as acceptor, upon addition of Ca2+. The V(max) was not changed with ferricyanide as acceptor, but increased twofold with both duroquinone and O2. Half-maximal stimulation of the NADPH oxidation was found at 3 μM free Ca2+ with both O2 and duroquinone as acceptors. This is the first report of a membrane-bound enzyme inside the inner mitochondrial membrane which is directly dependent on micromolar concentrations of Ca2+. Mersalyl and dicumarol, two potent inhibitors of the external NADH dehydrogenase in plant mitochondria, were found to inhibit internal rotenone-insensitive NAD(P)H oxidation, at the same concentrations and in manners very similar to their effects on the external NAD(P)H oxidationKeywords
This publication has 37 references indexed in Scilit:
- Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) MitochondriaPlant Physiology, 1991
- The Uniqueness Of Plant MitochondriaAnnual Review of Plant Biology, 1989
- Membrane-Bound NAD(P)H Dehydrogenases in Higher Plant CellsAnnual Review of Plant Biology, 1986
- Purification and characterization of the heat-stable calmodulin-binding protein from the matrix of bovine heart mitochondriaBiochemical and Biophysical Research Communications, 1983
- Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondriaBiochemical and Biophysical Research Communications, 1982
- Distribution of calmodulin within wheat leaf cellsFEBS Letters, 1982
- Purification and characterization of calmodulin from rat liver mitochondriaBiochemical and Biophysical Research Communications, 1982
- Role of Ca2+ in the oxidation of exogenous NADH by plant mitochondriaFEBS Letters, 1971
- Dt diaphorase I. Purification from the soluble fraction of rat-liver cytoplasm, and propertiesBiochimica et Biophysica Acta, 1962
- Über den wirkungsmechanismus des dicumarols und verwandter verbindungenBiochimica et Biophysica Acta, 1953