Recent experiments on conduction between a semiconductor and a superconductor have revealed a variety of new mesoscopic phenomena. Here is a review of the present status of this rapidly developing field. A scattering theory is described which leads to a conductance formula analogous to Landauer's formula in normal-state conduction. The theory is used to identify features in the conductance which can serve as "signatures" of phase-coherent Andreev reflection, i.e. for which the phase coherence of the electrons and the Andreev-reflected holes is essential. The applications of the theory include a quantum point contact, quantum dot, weak localization, universal conductance fluctuations, shot noise, and reflectionless tunneling. This review is based on lectures at the Les Houches summer school, Session LXI, 1994.