Statistical Mechanics of Dynamical Systems

Abstract
A statistical-mechanical formalism of chaos based on the geometry of invariant sets in phase space is discussed to show that chaotic dynamical systems can be treated by a formalism analogous to that of thermodynamic systems if one takes a relevant coarse-grained quantity, but their statistical laws are quite different from those of thermodynamic systems. This is a generalization of statistical mechanics for dealing with dissipative and hamiltonian (i.e., conservative) dynamical systems of a few degrees of freedom.

This publication has 0 references indexed in Scilit: