Evaluation of a Vancomycin Chiral Stationary Phase in Capillary Electrochromatography Using Polar Organic and Reversed-Phase Modes

Abstract
A vancomycin chiral stationary phase (CSP) was fully evaluated in capillary electrochromatography (CEC) in reversed-phase and polar organic modes for a number of racemic pharmaceutical compounds. High efficiency and resolution values were obtained for a number of compound classes including thalidomide in both the polar organic mode (190 000 plates meter-1 and Rs = 13.8) and reversed-phase mode (125 000 plates meter-1 and Rs = 13.0). Experimental parameters, including organic modifier, organic solvent ratio, ionic strength, pH, temperature, and voltage, were examined in both the aqueous and nonaqueous modes to deduce their effect on the resultant EOF, retention times, resolution, and efficiency of chiral separations. All results were consistent with and found to be a combination of what is known from existing literature on CEC theory and experience obtained with macrocyclic antibiotic CSPs in LC. Column stability was excellent, and each column packed was found to offer repeatable separations even when switching from the aqueous to the nonaqueous mode.