Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors
Open Access
- 15 September 1997
- journal article
- research article
- Published by Springer Nature in The EMBO Journal
- Vol. 16 (18) , 5608-5617
- https://doi.org/10.1093/emboj/16.18.5608
Abstract
Interleukin‐3 (IL‐3)‐dependent murine 32D cells do not detectably express epidermal growth factor receptors (EGFRs) and do not proliferate in response to EGF, heregulin (HRG) or other known EGF‐like ligands. Here, we report that EGF specifically binds to and can be crosslinked to 32D transfectants co‐expressing ErbB2 and ErbB3 (32D.E2/E3), but not to transfectants expressing either ErbB2 or ErbB3 individually. [125I]EGF‐crosslinked species detected in 32D.E2/E3 cells were displaced by HRG and betacellulin (BTC) but not by other EGF‐like ligands that were analyzed. EGF, BTC and HRG also induced receptor tyrosine phosphorylation, activation of downstream signaling molecules and proliferation of 32D.E2/E3 cells. 32D transfectants were also generated which expressed an ErbB3–EGFR chimera alone (32D.E3‐E1) or in combination with ErbB2 (32D.E2/E3‐E1). While HRG stimulation of 32D.E3‐E1 cells resulted in DNA synthesis and receptor phosphorylation, EGF and BTC were inactive. However, EGF and BTC were as effective as HRG in mediating signaling when ErbB2 was co‐expressed with the chimera in the 32D.E2/E3‐E1 transfectant. These results provide evidence that ErbB2/ErbB3 binding sites for EGF and BTC are formed by a previously undescribed mechanism that requires co‐expression of two distinct receptors. Additional data utilizing MDA MB134 human breast carcinoma cells, which naturally express ErbB2 and ErbB3 in the absence of EGFRs, supported the results obtained employing 32D cells and suggest that EGF and BTC may contribute to the progression of carcinomas that co‐express ErbB2 and ErbB3.Keywords
This publication has 59 references indexed in Scilit:
- ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signalingThe EMBO Journal, 1997
- Neu Differentiation Factor/Neuregulin Isoforms Activate Distinct Receptor CombinationsPublished by Elsevier ,1996
- Heregulin Stimulates Mitogenesis and Phosphatidylinositol 3-Kinase in Mouse Fibroblasts Transfected with erbB2/neu and erbB3Journal of Biological Chemistry, 1995
- EpiregulinJournal of Biological Chemistry, 1995
- Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer researchBreast Cancer Research and Treatment, 1995
- NDF/heregulin stimulates the phosphorylation of Her3/erbB3FEBS Letters, 1994
- EGF Receptor and erb B-2 Tyrosine Kinase Domains Confer Cell Specificity for Mitogenic SignalingScience, 1990
- mRNA Expression of Transforming Growth Factor Alpha in Human Breast Carcinomas and Its Activity in Effusions of Breast Cancer PatientsJNCI Journal of the National Cancer Institute, 1989
- Signal Transduction Through the EGF Receptor Transfected in IL-3-Dependent Hematopoietic CellsScience, 1988
- Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cellsBreast Cancer Research and Treatment, 1986