DNA Binding of an Ethidium Intercalator Attached to a Monolayer-Protected Gold Cluster

Abstract
Ethidium intercalation has been investigated as a means of inducing binding of Au nanoparticles to DNA. The ethidium sites are attached to the nanoparticles as thiolate ligands, using 3,8-diamino-5-mercaptododecyl-6-phenylphenanthridinium (ethidium thiolate). Each nanoparticle bears only one or two ethidium thiolate ligands. The rest of the thiolate monolayer ligands on the monolayer-protected Au clusters (MPCs) were either N-(2-mercaptopropionyl)glycine (tiopronin/ethidium MPC) or trimethyl(mercaptoundecyl)ammonium (TMA/ethidium MPC). In solution mixtures of DNA and MPCs, the energy-transfer quenching of the ethidium ligands by the metal-like MPC core is partially released by ethidium binding to DNA, as observed by an increase in the intensity of ethidium fluorescence. Binding of the cationic TMA/ethidium MPC to DNA was efficient and rapid. The negatively charged tiopronin/ethidium MPC, in contrast, exhibits slow intercalation kinetics, relative to ethidium cation not attached to an MPC. The slow kinetics were analyzed as two competing binding interactions. The tiopronin/ethidium MPC binding to DNA was imaged by AFM.