Pressure and temperature effects on optical transitions in cubic GaN

Abstract
Pressure and temperature effects on optical transitions in cubic GaN grown on a GaAs substrate have been studied by photoluminescence (PL) spectroscopy at hydrostatic pressures up to 9 GPa (10 K) and as a function of temperature (10–300 K) at ambient pressure. The dominant emissions at 10 K and ambient pressure are assigned to the bound-exciton transition (zero-phonon line), the donor-acceptor-pair (DAP) emission, and, tentatively, to the first three LO-phonon replicas of the bound exciton. These PL features shift to higher energy with increasing pressure. The pressure coefficients indicate that the observed recombination processes involve states which are closely related to the band edges. Temperature-induced evolutions from bound to free-exciton (FE) transition and DAP emission to free-to-bound transition are resolved. The binding energies of the FE and donor and acceptor levels in cubic GaN have been determined from the temperature and power-density dependence of the PL emission energies.