Electrical behaviour of powdered tin–antimony mixed oxide catalysts

Abstract
A series of tin + antimony mixed oxide powders, calcined at 773 K, has been studied by electrical conductivity. A continuity in the electrical behaviour is found between semiconducting SnO2 and insulating Sb2O4. Pure stannic oxide is an n-type semiconductor and its free electrons come from the first ionization of anionic vacancies whose concentration is ≈ 1018 cm–3 at 608 K under 2.13 × 104 Pa O2. The enthalpy of formation of these vacancies and the ionization energy of their 2nd electrons have been estimated. As the Sb content increases, antimony dissolves into the SnO2 structure in the 5+ state, which increases the conductivity, σ, up to a maximum corresponding to 6.1 Sb atom %. Around this value formation of the Sb2O4 phase begins. The increased conductivity of mixed oxides with high Sb content (>20 atom %), compared with that of Sb2O4, which is an insulator, is attributed to a doping effect by Sn4+ cations in Sb3+ lattice positions of Sb2O4. Comparison of how both σ and catalytic properties vary with Sb content shows that electron transfer between catalyst and adsorbed species is not the rate limiting step in propene oxidation and that the solid solution of Sb5+ in SnO2 cannot constitute the active phase for acrolein formation.

This publication has 0 references indexed in Scilit: