Abstract
Modification rules, expressible in terms of the removal of continuous boundary hooks, are derived which relate nonstandard irreducible representations (IR's) of the unitary, orthogonal, and symplectic groups in n dimensions to standard IR's. Tensorial methods are used to derive procedures for reducing the outer products of IR's of U(n), O(n), and Sp(n), and for reducing general IR's of U(n) specified by composite Young tableaux with respect to the subgroups O(n) and Sp(n). In these derivations the conjugacy relationship between the orthogonal and the symplectic groups is fully exploited. The results taken in conjunction with the modification rules are valid for all n.

This publication has 7 references indexed in Scilit: