A flash-erase EEPROM cell with an asymmetric source and drain structure
- 1 January 1987
- proceedings article
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- p. 560-563
- https://doi.org/10.1109/iedm.1987.191487
Abstract
A flash-erase EEPROM cell which consists of a single floating gate transistor is described. The cell is based on self-aligned double polysilicon stacked gate structure without a select transistor. It is programmed and erased by hot electrons at the drain edge similar to a UV-EPROM, and by Fowler-Nordheim tunneling of electrons from the floating gate to the source, respectively. An asymmetry in source and drain regions is introduced to enable fast program/erase operation. In addition, an n+concentration in the source region is optimized to achieve reproducible erasure, which is indispensable to avoid over-erasing problem. The optimized cell enables an erasing time of less than one millisecond with 12. 5 V on the source, and a scatter of erased Vth is almost negligible. Endurance and data retention characteristics is also adequate for implementation in memory chips. The small cell area of 9.3µm2is accomplished in a 0.8µm technology.Keywords
This publication has 0 references indexed in Scilit: