Evaluation of the Role of RecA Protein in Plant Virulence with recA Mutants of Xanthomonas campestris pv. campestris

Abstract
Xanthomonas campestris pv. campestris NRRL B1459 recA mutants were isolated by recombination with an interrupted Rhizobium etli recA gene and selection of double recombinants. The mutants were impaired in homologous genetic recombination and in DNA repair as judged by their sensitivity to methyl-methane-sulfonate and to UV irradiation; these defects are complemented in trans by the R. etli recA gene. Virulence of X. campestris pv. campestris NRRL B1459 to cabbage is considerably diminished by the recA mutation. The recA mutation is not correlated with the frequency of occurrence of a genetic rearrangement that affects chemotaxis, plant virulence, and xanthan gum production.