Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems
- 1 January 1989
- journal article
- Published by American Mathematical Society (AMS) in Mathematics of Computation
- Vol. 52 (186) , 275-297
- https://doi.org/10.1090/s0025-5718-1989-0962210-8
Abstract
Refined estimates for finite element or, more generally, Galerkin approximations of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented. More specifically, refined results on the asymptotic behavior of the eigenvalue and eigenvector errors are proved. Both simple and multiple eigenvalues are treated.Keywords
This publication has 9 references indexed in Scilit:
- Eigenvalue problemsPublished by Elsevier ,1991
- Regularity and Numerical Solution of Eigenvalue Problems with Piecewise Analytic DataSIAM Journal on Numerical Analysis, 1989
- Estimates for the Errors in Eigenvalue and Eigenvector Approximation by Galerkin Methods, with Particular Attention to the Case of Multiple EigenvaluesSIAM Journal on Numerical Analysis, 1987
- The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral OperatorsSIAM Review, 1981
- Rate of Convergence Estimates for Nonselfadjoint Eigenvalue ApproximationsMathematics of Computation, 1973
- Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems: 2. Improved error bounds for eigenfunctionsNumerische Mathematik, 1972
- Ein Kriterium für die Quasi-Optimalität des Ritzschen VerfahrensNumerische Mathematik, 1968
- Expansions in Eigenfunctions of Selfadjoint OperatorsPublished by American Mathematical Society (AMS) ,1968
- Error bounds in the Rayleigh-Ritz approximation of eigenvectorsJournal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, 1960