Finite-amplitude waves in inviscid shear flows

Abstract
This paper examines the existence and properties of steady finite-amplitude waves of cats-eye form superposed on a unidirectional inviscid, incompressible shear flow. The problem is formulated as the solution of nonlinear Poisson equations for the stream function with boundary conditions on the unknown edges of the cats-eyes. The dependence of vorticity on stream function is assumed outside the cats-eyes to be as in the undisturbed flow, and uniform unknown vorticity is assumed inside. It is argued on the basis of a finite difference discretization that the problem is determinate, and numerical solutions are obtained for Couette-Poiseuille channel flow. These are compared with the predictions of a weakly nonlinear theory based on the approach of Benney & Bergeron (1969) and Davis (1969). The phase speed of the waves is found to be linear in the wave amplitude.

This publication has 4 references indexed in Scilit: