Abstract
Surface-active material is present in most naturally occurring water samples, and it naturally diffuses steadily to free surfaces, where it both reduces the surface tension and gives the surface elastic properties which enable it to resist compression. When the water flows so that the surface layer is trapped and compressed against a fixed shallow-draught barrier the film material makes the surface incompressible, and flow beneath the barrier forms a viscous boundary layer under the film. The stresses associated with this boundary layer are found to distort the surface in the region of the leading edge of the film, giving rise to a phenomenon which is commonly observed in nature and which has been called the Reynolds ridge. This paper describes experimental work on the measurement of the ridge, and compares the results with a theoretical model due to Harper & Dixon. Good agreement is indicated.