Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals.
- 1 March 1993
- journal article
- abstracts
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 72 (3) , 688-695
- https://doi.org/10.1161/01.res.72.3.688
Abstract
We have investigated the regulated expression of genes injected into the heart of large mammals in situ. Reporter constructs using the chloramphenicol acetyltransferase gene under the control of muscle-specific beta-myosin heavy chain (beta-MHC) or promiscuous (mouse sarcoma virus) promoters were injected into the canine myocardium. There was a linear dose-response relation between the level of gene expression and the quantity of plasmid DNA injected between 10 and 200 micrograms per injection site. The level of reporter gene expression did not correlate with the amount of injury imposed on the cardiac tissue. There was no regional variation in expression of injected reporter genes throughout the left ventricular wall. By use of both the mouse sarcoma virus and a muscle-specific beta-MHC promoter, reporter gene expression was one to two orders of magnitude greater in the heart than in skeletal muscle. Expression in the left ventricle was threefold higher than in the right ventricle. Chloramphenicol acetyltransferase activity was detected at 3, 7, 14, and 21 days after injection, with maximal expression at 7 days after injection. Statistical analysis of coinjection experiments revealed that coinjection of a second gene construct (Rous sarcoma virus-luciferase) is useful in the control of transfection efficiency in vivo. Furthermore, using reporter constructs containing serial deletions of the 5' flanking region of the beta-MHC gene, we performed a series of experiments that demonstrate the utility of this model in mapping promoter regions and identifying important regulatory gene sequences in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 22 references indexed in Scilit:
- Modulation of firefly luciferase stability and impact on studies of gene regulationPublished by Elsevier ,2003
- Genetic immunization is a simple method for eliciting an immune responseNature, 1992
- Direct Gene Transfer into Mouse Muscle in VivoScience, 1990
- Recombinant Gene Expression in Vivo Within Endothelial Cells of the Arterial WallScience, 1989
- A simple phase-extraction assay for chloramphenicol acyltransferase activityGene, 1988
- Parental legacy determines methylation and expression of an autosomal transgene: A molecular mechanism for parental imprintingCell, 1987
- Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals.Journal of Clinical Investigation, 1987
- Tissue-Specific Expression in Transgenic Mice of a Fused Gene Containing RSV Terminal SequencesScience, 1986
- Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammalsDevelopmental Biology, 1981
- Myosin isoenzyme redistribution in chronic heart overloadNature, 1979