Neocortical Very Fast Oscillations (Ripples, 80–200 Hz) During Seizures: Intracellular Correlates
- 1 February 2003
- journal article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 89 (2) , 841-852
- https://doi.org/10.1152/jn.00420.2002
Abstract
Multi-site field potential and intracellular recordings from various neocortical areas were used to study very fast oscillations or ripples (80–200 Hz) during electrographic seizures in cats under ketamine-xylazine anesthesia. The animals displayed spontaneously occurring and electrically induced seizures comprising spike-wave complexes (2–3 Hz) and fast runs (10–20 Hz). Neocortical ripples had much higher amplitudes during seizures than during the slow oscillation preceding the onset of seizures. A series of experimental data from the present study supports the hypothesis that ripples are implicated in seizure initiation. Ripples were particularly strong at the onset of seizures and halothane, which antagonizes the occurrence of ripples, also blocked seizures. The firing of electrophysiologically defined cellular types was phase-locked with ripples in simultaneously recorded field potentials. This indicates that ripples during paroxysmal events are associated with a coordination of firing in a majority of neocortical neurons. This was confirmed with dual intracellular recordings. Based on the amplitude that neocortical ripples reach during paroxysmal events, we propose a mechanism by which neocortical ripples during normal network activity could actively participate in the initiation of seizures on reaching a certain threshold amplitude. This mechanism involves a vicious feedback loop in which very fast oscillations in field potentials are a reflection of synchronous action potentials, and in turn these oscillations help generate and synchronize action potentials in adjacent neurons through electrical interactions.Keywords
This publication has 44 references indexed in Scilit:
- Axo-Axonal CouplingNeuron, 2001
- On The Cellular and Network Bases of Epileptic SeizuresAnnual Review of Physiology, 2001
- A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, SeizuresEpilepsia, 2001
- Ion channels in glial cellsBrain Research Reviews, 2000
- Gap junctions, synchrony and seizuresTrends in Neurosciences, 2000
- Electrical coupling underlies high-frequency oscillations in the hippocampus in vitroNature, 1998
- Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsyThe Journal of Physiology, 1998
- Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual CortexScience, 1996
- High-Frequency EEG Activity at the Start of SeizuresJournal Of Clinical Neurophysiology, 1992
- Sleep and EpilepsyEpilepsia, 1985