Infant Rat Model of the Shaken Baby Syndrome: Preliminary Characterization and Evidence for the Role of Free Radicals in Cortical Hemorrhaging and Progressive Neuronal Degeneration
- 1 September 1998
- journal article
- research article
- Published by Mary Ann Liebert Inc in Journal of Neurotrauma
- Vol. 15 (9) , 693-705
- https://doi.org/10.1089/neu.1998.15.693
Abstract
Infants subjected to repeated episodes of violent shaking develop brain damage characterized by intracranial hemorrhage and progressive cortical atrophy. We have developed an animal model that mimics this pathological state and investigated its etiology and treatment. Anesthetized male rats, 6 days of age, were subjected to one episode of shaking per day for 3 consecutive days. Separate groups of rats were sacrificed 1 h postinjury on the third day of shaking for HPLC quantification of cortical •OH and vitamin E levels, and histological assessment of cortical hemorrhaging. Additional groups were sacrificed 7 or 14 days postinjury to demonstrate progressive neuronal degeneration via cortical wet weight comparisons. In comparison to noninjured shams, the results indicated that cortical vitamin E and •OH levels rose 53.7% (p < 0.005) and 457.1% (p < 0.001), respectively, in shaken infant rats. Brain histologies revealed a moderate-to-severe degree of cortical hemorrhaging in these animals 1 h postinjury. By 7 and 14 days postinjury, there was a 13.3% and 28.7% (p < 0.0001 vs. sham) loss of cortical tissue in shaken infants, respectively, indicating progressive neuronal degeneration. Treatment with 10 mg/kg (ip) of the 21-aminosteroid antioxidant, tirilazad mesylate, 10 min before and 2 h after each episode of shaking, resulted in a 53.1% attenuation of cortical •OH levels and a 34.9% decrease in brain hemorrhaging (p < 0.05 vs. vehicle). Tirilazad treatment did not, however, significantly effect cortical vitamin E concentrations at 1 h postinjury or the extent of progressive neuronal degeneration at either 7 or 14 days postinjury. The present animal model mimics the brain pathology seen in abused children. Our observation that tirilazad mesylate, an antioxidant-lipid peroxidation inhibitor, significantly reduces cortical •OH levels and brain hemorrhaging in shaken infant rats supports a role for oxygen radicals in the pathophysiology of this type of CNS injury. The failure of tirilazad to block progressive cortical degeneration suggests that mechanisms other than free radicals may be of prime importance in the mediation of this aspect of the pathology.Keywords
This publication has 40 references indexed in Scilit:
- Secondary Insults Increase Injury after Controlled Cortical Impact in RatsJournal of Neurotrauma, 1996
- Prevention of trauma-induced neurodegeneration in infant and adult rat brain: Glutamate antagonistsMetabolic Brain Disease, 1996
- Hypoxic-ischemic injury in the neonatal rat brain: effects of pre-and post-treatment with the glutamate release inhibitor BW1003C87Developmental Brain Research, 1994
- Age‐Related Regional Changes in Hydroxyl Radical Stress and Antioxidants in Gerbil BrainJournal of Neurochemistry, 1993
- Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats.Stroke, 1989
- The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in ratsJournal of Neurosurgery, 1988
- Thermoregulation and diurnal rhythms in 1-week-old rat pupsCanadian Journal of Physiology and Pharmacology, 1987
- The shaken baby syndromeJournal of Neurosurgery, 1987
- Flunarizine limits hypoxia-ischemia induced morphologic injury in immature rat brain.Stroke, 1986
- Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhageJournal of Neurosurgery, 1985