Modulation of Calmodulin Properties by Amiodarone and its Major Metabolite Desethylamiodarone

Abstract
Long-term amiodarone therapy is invariably associated with some side effects. Although its mechanism of action, as an antiarrhythmic drug is well understood, the side effect profile of amiodarone is not yet established. To determine possible mechanisms, the interaction of amiodarone and its major metabolite desethylamiodarone with calmodulin was investigated, since calmodulin is known to regulate Ca2+ transport, cell proliferation and the enzymes involved in signal transduction and nucleotide metabolism. The interaction between the drugs and calmodulin was studied by monitoring intrinsic tyrosine fluorescence of calmodulin and by using a fluorescent probe, N-phenyl-1-naphthylamine (NPN). 14C-Chlorpromazine displacement studies were conducted to differentiate the specific binding sites. The effect on the biological activity of calmodulin was determined with calmodulin dependent phosphodiesterase and Ca2(+)-ATPase. The dansyl calmodulin was used as fluorescent probe to study the effect of these drugs on complex formation between calmodulin and phosphodiesterase. Both amiodarone and desethylamiodarone decreased tyrosine fluorescence of calmodulin with IC50 of 4.9 and 4.4 microM respectively and these interactions were Ca2(+)-dependent. NPN fluorescence was also affected in a concentration dependent manner. These drugs also displaced bound 14C-chlorpromazine from calmodulin and the effect was biphasic. However, desethylamiodarone was more potent than amiodarone. The binding of 3H-amiodarone to calmodulin was modified by a variety of compounds, one class of compounds decreased and the other increased 3H-amiodarone binding to calmodulin. Only, desethylamiodarone inhibited the phosphodiesterase activation by calmodulin with IC50 of 13.2 microM without changing the basal enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords