Abstract
Summary: Bacillus subtilis was shown to utilize three types of hydroxamate siderophores, ferrichromes, ferrioxamines and shizokinen, each of which is taken up by different transport systems. Mutants deficient in the uptake of ferrichrome and/or ferrioxamine B were isolated. The gene fhuD, which was able to complement a mutant defective in ferrichrome uptake, was cloned. The deduced sequence of FhuD showed low but significant homology to the binding proteins FepB, FecB and FhuD of Escherichia coli, which are all components of binding protein‐dependent, ferric siderophore transport systems. The first 23 amino acids of FhuD of B. subtilis possessed all characteristics of a lipoprotein signal sequence. The processing of FhuD in E. coli was inhibited by globomycin. Inhibition by globomycin indicated a lipid modification at the N‐terminal cysteine in E. coli. It is highly likely that this step may also take place in B. subtilis. As in other binding protein‐dependent transport systems of Gram‐positive organisms it is proposed that the lack of a periplasm is compensated for by the lipid through which the binding protein is anchored to the cytoplasmic membrane.