Metal Ion Leaching from Contaminated Soils: Model Calibration and Application

Abstract
A previously developed model that describes leaching of heavy metals from contaminated soils is applied to four hazardous-waste-site soils contaminated with Pb. Processes included in the model are intraparticle diffusion, rate expressions for irreversibly and reversibly sorbed fractions, and metal complexation by ions in solution. The model is calibrated using laboratory experimental data in the pH 1–3 range, liquid-to-solid mass ratios from 5 to 20, and leaching times of 24 h. Parameters for the model are estimated through a combination of independent experiments, literature correlations, and mathematical optimization. Equilibrium data were used to estimate site density and an adsorption equilibrium constant. Two kinetic rate coefficients, a particle tortuosity factor, and a distribution coefficient (αa) that defined the amount of Pb in two contaminant fractions were adjusted to match kinetic leaching data. Using one set of parameter estimates for each soil, the model successfully simulated experimental data collected under different leaching conditions. The fraction of Pb associated with easily leachable, irreversibly sorbed fraction (1 −αa) provides some insight to the geochemical distribution of Pb in the soils tested. The model is used to explore effects of process variables such as liquid-to-solid ratio and sequential washes. The model should be useful for simulating ex-situ soil washing processes and may, with further development, have applications for in-situ flushing processes.