Human buccal epithelial cell receptors of Pseudomonas aeruginosa: identification of glycoproteins with pilus binding activity

Abstract
Adherence of Pseudomonas aeruginosa to a patient's epithelial surface is thought to be an important first step in the infection process. Pseudomonas aeruginosa is capable of attaching to epithelial cells via its pili, yet little is known about the epithelial receptors of this adhesin. Using nitrocellulose replicas of polyacrylamide gels of solubilized human buccal epithelial cells (BECs), glycoproteins (Mz: 82 000, and four bands between 40 000 and 50 000) that bound purified pili from P. aeruginosa strain K (PAK) were identified by immunoblotting with a pilus-specific monoclonal antibody that does not affect pilus binding to BECs (PK3B). All pilus-binding glycoproteins were surface localized, as determined by surface radioiodination of intact BECs. Binding of pili to all of the glycoproteins was inhibited by Fab fragments of monoclonal antibody PK99H, which inhibits PAK pili binding to BECs by binding to or near the binding domain of the pilus, but not by Fab fragments of monoclonal antibody PK41C, which binds to PAK pilin but does not inhibit pili binding to BECs, demonstrating that pilus binding to these glycoproteins is likely via the same region of the pilus that binds to intact BECs. Periodate oxidation of the blot eliminated pili binding to all glycoproteins, indicating that a carbohydrate moiety is an important determinant for pilus-binding activity. However, not all of the glycoproteins exhibited the same degree of sensitivity to periodate oxidation. Furthermore, monosaccharide inhibition of pilus binding to BECs implicated L-fucose and N-acetylneuraminic acid as receptor moieties.Key words: Pseudomonas aeruginosa, pili, receptor, adhesion.