A role for ultraviolet radiation immunosuppression in non-melanoma skin cancer as evidenced by gene-environment interactions
- 13 March 2008
- journal article
- Published by Oxford University Press (OUP) in Carcinogenesis: Integrative Cancer Research
- Vol. 29 (10) , 1950-1954
- https://doi.org/10.1093/carcin/bgn160
Abstract
The genotoxic effects of ultraviolet (UV) radiation are well-known causes of skin cancers; however, UV radiation also suppresses the immune system, decreasing the body's surveillance for tumor cells. In experimental systems, UV radiation immunosuppression is at least partially mediated through urocanic acid (UCA), an UV radiation-absorbing molecule in the stratum corneum. We tested the hypothesis that genetic variation in the histidase gene (HAL), which catalyzes the formation of UCA in the skin, modifies risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) in a population-based study (914 BCC, 702 SCC and 848 controls). We observed no evidence of a main gene effect for the HAL I439V polymorphism (rs7297245) and BCC or SCC. However, we found a HAL genotype-sunburn interaction in association with BCC (P for interaction = 0.040) and SCC (P for interaction = 0.018). A HAL genotype-SCC association was observed primarily among women (odds ratio = 1.5, 95% confidence interval 1.1-2.2), and among women, we found an interaction between HAL genotype and oral contraceptive use on SCC risk (P = 0.040). The variant HAL allele likewise appeared to modify the SCC risk associated with glucocorticoid steroid usage (P for interaction = 0.0004). In conclusion, our findings are a first step in determining the genetic underpinnings of UV immune suppression and have identified important new genetic interactions contributing to the etiology of skin cancer.Keywords
This publication has 55 references indexed in Scilit:
- XPA, haplotypes, and risk of basal and squamous cell carcinomaCarcinogenesis: Integrative Cancer Research, 2005
- Sequence‐based prediction of pathological mutationsProteins-Structure Function and Bioinformatics, 2004
- Oestrogen receptor beta is the predominant oestrogen receptor in human scalp skinExperimental Dermatology, 2003
- A Critical Role for Dermal Mast Cells in Cis‐Urocanic Acid‐induced Systemic Suppression of Contact Hypersensitivity Responses in MicePhotochemistry and Photobiology, 1999
- Can Skin Cancers Be Minimized or Prevented in Organ Transplant Patients?JNCI Journal of the National Cancer Institute, 1999
- Molecular Cloning and Structural Characterization of the Human Histidase Gene (HAL)Genomics, 1995
- Effects of Ultraviolet B Light on Cutaneous Immune Responses of Humans with Deeply Pigmented SkinJournal of Investigative Dermatology, 1991
- EXPOSURE OF MICE TO UV-B RADIATION SUPPRESSES DELAYED HYPERSENSITIVITY TO Candida albicansPhotochemistry and Photobiology, 1989
- Performance of tests of significance based on stratification by a multivariate confounder score or by a propensity scoreJournal of Clinical Epidemiology, 1989
- The relationship of histochemically reactive histidine to histidase activity in the epidermis of growing ratsThe Anatomical Record, 1967