Abstract
The purpose of this paper is twofold: first, to review analytical, experimental, and numerical methods for studying the nonlinear, pseudoelastic behavior of membranes of interest in biomechanics, and second, to present illustrative examples from the literature for a variety of biomembranes (e.g., skin, pericardium, pleura, aneurysms, and cells) as well as elastomeric membranes used in balloon catheters and new cell stretching tests. Although a membrane approach affords great simplifications in comparison to the three-dimensional theory of nonlinear elasticity, associated problems are still challenging. Computer-based methods are essential, therefore, for performing the requisite experiments, analyzing data, and solving boundary and initial value problems. Emphasis is on stable equilibria although material instabilities and elastodynamics are discussed.