Immunoreactive forms of erythrocyte spectrin and ankyrin in brain

Abstract
Polypeptides immunologically related to erythrocyte spectrin and ankyrin have been detected in brain. The cross-reacting proteins include soluble as well as membrane-associated forms. A class of soluble cross-reacting polypeptides have been identified as high molecular mass microtubule-associated proteins (MAPS). MAP1, a group of polypeptides of molecular mass ca . 370 kDa contains a component that cross-reacts with anti-ankyrin IgG. MAP2, a polypeptide of molecular mass 300 kDa cross-reacts with anti-spectrin IgG, with the shared antigenic sites localized to the α chain of spectrin. The functional basis for structural homology between MAP1 and ankyrin may involve association with tubulin, since erythrocyte ankyrin binds to microtubules polymerized from pure brain tubulin. Spectrin did not associate with microtubules, but does have in common with MAP2 the ability to bind to actin (Brenner & Korn 1979; Sattilaro et al . 1981) and the shape of a flexible rod as visualized by rotary shadowing (Shotton et al . 1979; Voter & Erickson 1981). Immunoreactive forms of spectrin and ankyrin are also present in membrane fractions. A homologue of spectrin which constitutes 3% of the total membrane protein has been purified from low ionic strength extracts of membranes. This protein contains two non-identical polypeptide chains of molecular masses of 260 and 265 kDa, binds to F-actin, and displaces binding of erythrocyte spectrin to erythrocyte membranes. The brain protein pas been visualized by rotary shadowing as an extended rod-like molecule 195 nm in length. These studies indicate that the organization of proteins in the membrane-cytoskeleton complex of erythrocytes has direct relevance to other types of cells, and suggest the existence of families of proteins related to spectrin and ankyrin.