Simulation of head movement trajectories: model and fit to main sequence

Abstract
A sixth order nonlinear model for horizontal head rotations in humans is presented and investigated using experimental results on head movement trajectories and neck muscle EMG. The controller signals, structured in accordance with time optimal control theory, are parameterized, and controller signal parameter variations show a dominating influence on different aspects of the head movement trajectory. The model fits the common head acceleration types over a wide range of amplitudes, and also less common (dynamic overshoot) trajectories.