Abstract
The detailed mechanical behavior to yield of three thermoplastics—polycarbonate, polybutylene terephthalate, and polyetherimide—subjected to simulated forming histories, is examined in order to gain an insight into the sheet forming process for thermoplastics. The phenomenology of yield is shown to be quite different for semicrystalline polybutylene terephthalate when compared with amorphous polycarbonate and polyetherimide. The dependence of the mechanical properties of thermoplastics on temperature, deformation rate and hold-time periods are shown to be important for understanding and controlling the solid phase sheet forming process.

This publication has 0 references indexed in Scilit: