Conformal Geometry and the Cyclides of Dupin

Abstract
A Riemannian manifold (M, g) is said to be conformally flat if every point has a neighborhood conformai to an open set in Euclidean space. Over the past thirty years, many papers have appeared attacking, with varying degrees of success, the problem of classifying the conformally flat spaces which occur as hypersurfaces in Euclidean space. Most of these start from the following pointwise result of Schouten.

This publication has 2 references indexed in Scilit: