Light- and electron microscopy of isolated vestibular hair cells from the guinea pig

Abstract
Cells isolated from the guinea-pig vestibular sensory epithelia were studied using light- and electron-microscopic techniques. The cells maintained their characteristic shapes when they had been separated. Mammalian vestibular cells are traditionally divided into two classes, type-I and type-II hair cells. It was, however, found that the population of isolated cells consisted of hair cells with a striking variability in shape and size. This was most conspicuous for the type-I hair cells. Isolated hair cells processed for electron microscopy showed that the isolation process caused minor ultrastructural damage but that the separation often was incomplete in that the large calyx-like nerve endings were still attached to type-I cells. The results suggest that the distinction of only two classes might be insufficient to describe mammalian vestibular hair cells.